
mhealpy
Release 0.1.8

Dec 09, 2020

Contents:

1 Installation 3
1.1 For developers . 3

2 Quick start 5
2.1 mhealpy as an object-oriented healpy wrapper . 5
2.2 Plotting . 7
2.3 Order/scheme changes and the density parameter . 9
2.4 Arithmethic operations . 10
2.5 Multi-resolution maps . 12

3 Examples 17
3.1 LIGO/Virgo maps, I/O and resampling . 17

4 API 25
4.1 Classes . 25
4.2 Pixelization functions . 40

Python Module Index 43

Index 45

i

ii

mhealpy, Release 0.1.8

Warning: This project has been moved to https://mhealpy.readthedocs.io

HEALPix is a Hierarchical, Equal Area, and iso-Latitude Pixelisation of the sphere. It has been implemented in
multiple languages, including Python through the healpy library.

mhealpy is an object-oriented wrapper of healpy, in the fashion of Healpix C++, that extends its functionalities to
handle multi-resolution maps.

Contents: 1

https://mhealpy.readthedocs.io
https://healpix.jpl.nasa.gov
https://healpy.readthedocs.io
https://healpix.sourceforge.io/html/Healpix_cxx/index.html

mhealpy, Release 0.1.8

2 Contents:

CHAPTER 1

Installation

Warning: This project has been moved to https://mhealpy.readthedocs.io

Run:

pip install mhealpy

Or alternatively, install it from source:

pip install --user git+https://gitlab.com/burstcube/HealpixMap.git@master

1.1 For developers

First, install healpy, the only dependency:

pip install healpy

Then you can get a working version of mhealpy with:

git clone git@gitlab.com:burstcube/HealpixMap.git mhealpy
cd mhealpy
python setup.py develop

3

https://mhealpy.readthedocs.io

mhealpy, Release 0.1.8

4 Chapter 1. Installation

CHAPTER 2

Quick start

WARNING: This project has been moved to https://mhealpy.readthedocs.io

This tutorial shows you how to handle single and multi-resolution maps (a.k.a. multi-order coverage maps or MOC
maps). It assumes previous knowledge of HEALPix. If you already are a healpy user, it should be straightforward to
start using mhealpy.

See also the API documentation, as this is not meant to be exhaustuve.

2.1 mhealpy as an object-oriented healpy wrapper

A single-resolution map is completely defined by an order (𝑛𝑝𝑖𝑥 = 12 * 4𝑜𝑟𝑑𝑒𝑟 = 12 * 𝑛𝑠𝑖𝑑𝑒2), a scheme (RING or
NESTED) and an list of the maps contents. In healpy there is no class that contains this information, but rather the
user needs to keep track of these and pass this information around to various functions. For example, to fill a map you
can do:

[1]: import numpy as np
import healpy as hp

Define the grid
nside = 4
scheme = 'nested'
is_nested = (scheme == 'nested')

Initialize the "map", which is a simple array
data = np.zeros(hp.nside2npix(nside))

Get the pixel where a point lands in the current scheme
theta = np.deg2rad(90)
phi = np.deg2rad(50)

sample_pix = hp.ang2pix(nside, theta, phi, nest = is_nested)

(continues on next page)

5

https://mhealpy.readthedocs.io
http://ivoa.net/documents/MOC
https://healpix.jpl.nasa.gov/
https://healpy.readthedocs.io/

mhealpy, Release 0.1.8

(continued from previous page)

Add the count
data[sample_pix] += 1

Save to disc
hp.write_map("my_map.fits", data, nest = is_nested, overwrite=True, dtype = int)

Plot
hp.mollview(data, nest = is_nested)

At zeroth-order, HealpixMap is a container that keeps track of the information defining the grid. The equivalent code
would look like:

[2]: from mhealpy import HealpixMap

Define the grid and initialize
m = HealpixMap(nside = nside, scheme = scheme, dtype = int)

Get the pixel where a point lands in the current scheme
sample_pix = m.ang2pix(theta, phi)

Add the count
m[sample_pix] += 1

Save to disc
m.write_map("my_map.fits", overwrite=True)

Plot
m.plot();

6 Chapter 2. Quick start

mhealpy, Release 0.1.8

HealpixMap objects are array-like, which mean you can cast them into a numpy array, do slicing and indexing, iterate
over them and use built-in functions. For example:

[3]: data = np.array(m)

print("Data: {}".format(data))

print("Max: {}".format(max(m)))

for pix,content in enumerate(m):
if content > 0:

print("Max center: {} deg".format(np.rad2deg(m.pix2ang(pix))))

Data: [0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0
0 0
0 0 0 0 0 0 0]

Max: 1
Max center: [90. 56.25] deg

2.2 Plotting

healpy contains multiple routines to plot maps with various projections, and add text, points and graticules. For
example, we can do a zoom in the previous map with:

[4]: hp.cartview(data, nest = is_nested, latra = [-15,15], lonra = [40,70])

hp.projtext(theta, phi, "here");

2.2. Plotting 7

mhealpy, Release 0.1.8

HealpixMap has a single plot() method, but it is more versatile. It a matplotlib Axes object, which allows full control
over how and where to plot the map. A new axes created by default it not provided, as in the previous example.
As output, it returns an AxesImage (as obtained with imshow and a healpy projector. The former allows you to
customize the plot and the latter to add any arbitrary marking, such as text. For example:

[5]: import matplotlib.pyplot as plt

Create custom axes
fig,(axMoll,axCart) = plt.subplots(1,2, dpi = 150)

axMoll.axis('off')
axCart.axis('off')

Plot in one of the axes
plotMoll, projMoll = m.plot(ax = axMoll, proj = 'moll')
plotCart, projCart = m.plot(ax = axCart, proj = 'cart', latra = [-15,15], lonra = [40,
→˓70])

Use the projector to get the equivalent plot pixel for a given coordinate
You can use it with any matplotlib method
x,y = projMoll.ang2xy(theta, phi)
axMoll.text(x,y, "here", size = 7)

x,y = projCart.ang2xy(theta, phi)
axCart.text(x,y, "here", size = 7)

Full control over plot, same as using pyplot.imshow
fig.colorbar(plotMoll, orientation="horizontal");

8 Chapter 2. Quick start

https://matplotlib.org/api/axes_api.html
https://matplotlib.org/3.3.1/api/_as_gen/matplotlib.pyplot.imshow.html
https://healpy.readthedocs.io/en/latest/healpy_projector.html

mhealpy, Release 0.1.8

2.3 Order/scheme changes and the density parameter

In healpy you can change the underlaying grid of a map with a combination of ud_grade(), reorder(). The equivalent
in a HealpixMap is to use rasterize(), e.g.:

[6]: # Upgrade from nside = 4 to nside = 8, and change scheme from 'nested' to 'ring'
m_up = m.rasterize(8, scheme = 'ring')

print("New nside: {}".format(m_up.nside))
print("New scheme: {}".format(m_up.scheme))
print("New max: {}".format(max(m_up)))
print("New total: {}".format(sum(m_up)))

New nside: 8
New scheme: RING
New max: 0.25
New total: 1.0

In the original map we had one single count, so the maximum was 1. When we upgraded the resolution, the maximum
of the new map is 0.25 but the total is still 1. This happened because, by default, the map are considered histograms
and the value of new pixels is updated when they are split or combined. In this case, a pixel with a value of 1 was split
into 4 child pixels, each with a value of 0.25.

This behaviour can be changed with the density parameter. If True, the value of each pixels is considered to be the
evaluation of a function at the center of the pixel. Or equivalently, the map is considered a histogram whose contents
have been divided by the area of the pixel, resulting in a density distribution.

2.3. Order/scheme changes and the density parameter 9

https://healpy.readthedocs.io/en/latest/generated/healpy.pixelfunc.ud_grade.html
https://healpy.readthedocs.io/en/latest/generated/healpy.pixelfunc.reorder.html

mhealpy, Release 0.1.8

[7]: m.density(True)

Change grid
m_up = m.rasterize(8, scheme = 'ring')

print("New nside: {}".format(m_up.nside))
print("New scheme: {}".format(m_up.scheme))
print("New max: {}".format(max(m_up)))
print("New total: {}".format(sum(m_up)))

New nside: 8
New scheme: RING
New max: 1.0
New total: 4.0

The maximum now stays a constant 1, but the total count is no longer conserved. We now have 4 pixels with the same
value as the parent pixel.

2.4 Arithmethic operations

Regardless of the underlaying grid, you can operate on maps pixel-wise using *, /, +, -, **, == and abs. To illustrate
this let’s multiply two simple maps:

[8]: import mhealpy as hmap

Initialize map.
Note this are density maps. This parameters comes into play when operatiing over two
maps with different NSIDE
If both maps are density-like, the result is also density-like,
otherwise the result is histogram-like
m1 = HealpixMap(nside = 64, scheme = 'ring', density = True)
m2 = HealpixMap(nside = 128, scheme = 'nested', density = True)

Fill first map with a simple disc
theta = np.deg2rad(90)
phi = np.deg2rad(45)
radius = np.deg2rad(30)
disc_pix = m1.query_disc(hmap.ang2vec(theta, phi), radius)

m1[disc_pix] = 1

Fill second map with a similar disc, just shifted
phi = np.deg2rad(10)
disc_pix = m2.query_disc(hmap.ang2vec(theta, phi), radius)

m2[disc_pix] = 1

Multiply
mRes = m1*m2

print("Result nside: {}".format(mRes.nside))
print("Result scheme: {}".format(mRes.scheme))

Plot side by side
fig,(ax1,ax2,axRes) = plt.subplots(1,3, dpi=200)

(continues on next page)

10 Chapter 2. Quick start

mhealpy, Release 0.1.8

(continued from previous page)

ax1.axis('off')
ax2.axis('off')
axRes.axis('off');

ax1.set_title("m1", size= 5);
ax2.set_title("m2", size= 5);
axRes.set_title("m1*m2", size= 5);

m1.plot(ax1)
m2.plot(ax2)
mRes.plot(axRes);

Result nside: 128
Result scheme: NESTED

The resulting map of binary operation always has the finest grid of the two inputs. This ensures there is no loss of
information. If both maps have the same nside, the output map has the scheme of the left operarand.

Sometimes though you want to keep the grid of a specific map. For that you can use in-place operations. If you really
need a new map, you can use in-place operations in combination with deepcopy. For example:

[9]: from copy import deepcopy

mRes = deepcopy(m1)

mRes *= m2

print("Result nside: {}".format(mRes.nside))
print("Result scheme: {}".format(mRes.scheme))

mRes.plot();

Result nside: 64
Result scheme: RING

2.4. Arithmethic operations 11

mhealpy, Release 0.1.8

2.5 Multi-resolution maps

Multi-order coverage (MOC) map –i.e. multi-resolution maps– are maps that tile the sky using pixels corresponding
to different nside. Because a simple pixel number correspond to different locations depending on the map order, each
pixel that composes the map needs to know the corresponding nside. Instead of storing two numbera though, we use
the NUNIQ scheme, where each pixels is labeled by an uniq number defined as:

𝑢𝑛𝑖𝑞 = 4 * 𝑛𝑠𝑖𝑑𝑒 * 𝑛𝑠𝑖𝑑𝑒+ 𝑖𝑝𝑖𝑥,

where 𝑖𝑝𝑖𝑥 corresponds to the pixel number in a NESTED scheme. This operation can be easily reversed to obtain
both the nside and ipix values.

As a first example, let’s assign to the 12 base pixels of a zero-order map the values of their own indices, but splitting
the first pixel into the four child pixels of the nest order:

[10]: # child pixels of ipix=0 | rest of the base pixels
uniq = [16, 17, 18, 19, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
contents = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

m = HealpixMap(contents, uniq, density = True)

If you plot it, it’ll look as a single-resolution map:

[11]: m.plot();

12 Chapter 2. Quick start

http://ivoa.net/documents/MOC/

mhealpy, Release 0.1.8

But if we plot the pixel boundaries it’ll be clear that his is a multi-resolution map:

[12]: print("Is this a multi-resolution map? {}".format(m.is_moc))

m.plot()
m.plot_grid(ax = plt.gca(), color = 'white')

Is this a multi-resolution map? True

[12]: ([<matplotlib.lines.Line2D at 0x7f8211048e20>],
<healpy.projector.MollweideProj at 0x7f82410c2a60>)

If you initialize the data of a MOC map by hand, it’s generally a good idea to check that all locations of the sphere are
covered by one and only one pixel:

2.5. Multi-resolution maps 13

mhealpy, Release 0.1.8

[13]: m.is_mesh_valid()

[13]: True

2.5.1 Adaptive grids

Usually though, you don’t need to create the grid of a MOC map by hand since mhealpy can choose an appropiate
pixelation for you. The simplest case is when you know exactly which region needs a higher pixelation. For example,
assume there is a source localized to a ~0.01deg reosolution. In order to achieve this resolution, you need a map with
an nside of 16384 (the pixel size is ~0.003deg). It would be wasteful to hold in memory a full map for only this region
of the sky.

[14]: from numpy import exp
from mhealpy import HealpixBase

Location and uncertainty of the source
theta0 = np.deg2rad(90)
phi0 = np.deg2rad(45)
sigma = np.deg2rad(0.01)

Chose an appropiate nside to represent it
HealpixBase is a map without data, only the grid is defined
mEq = HealpixBase(order = 14)

Create a MOC map where the region around the source is
finely pixelated at the highest order, and the rest of
the map is left to mhealpy to fill appropiately
disc_pix = mEq.query_disc(hmap.ang2vec(theta0, phi0), 3*sigma)

m = HealpixMap.moc_from_pixels(mEq.nside, disc_pix, density=True)

print("NUNIQ pixels in MOC map: {}".format(m.npix))
print("Equivalent single-resolution pixels: {}".format(mEq.npix))

Fill the map. This code would look exactly the same if this were a
single-resolution map
for pix in range(m.npix):

theta,phi = m.pix2ang(pix)

m[pix] = exp(-((theta-theta0)**2 + (phi-phi0)**2) / 2 / sigma**2)

Plot, zooming in around the source
fig, (axMoll, axCart) = plt.subplots(1, 2, figsize = [14,7])

axMoll.axis('off')

axMoll.set_title("Full-sky", size = 20)
axCart.set_title("Zoom in", size = 20)

lonra = np.rad2deg(phi0) + [-.1, .1]
latra = 90 - np.rad2deg(theta0) + [-.1, .1]

_, projMoll = m.plot(axMoll, proj = 'moll');
_, projCart = m.plot(axCart, proj = 'cart', lonra = lonra, latra = latra);

(continues on next page)

14 Chapter 2. Quick start

mhealpy, Release 0.1.8

(continued from previous page)

axCart.set_xlabel("Azimuth angle [deg]")
axCart.set_ylabel("Zenith angle [deg]");

Show grid
m.plot_grid(axMoll, proj = 'moll', color='white', linewidth = .2)
m.plot_grid(axCart, proj = 'cart', lonra = lonra, latra = latra, color='white',
→˓linewidth = .1)

NUNIQ pixels in MOC map: 372
Equivalent single-resolution pixels: 3221225472

[14]: ([<matplotlib.lines.Line2D at 0x7f81f0f14c40>],
<healpy.projector.CartesianProj at 0x7f8230c03c40>)

The function moc_from_pixels() is a convenience routine derived from adaptive_moc_mesh(). The same is true for
moc_histogram() and to_moc(). In the more general adaptive_moc_mesh() the user provides an arbitrary function that
decides, recusively, whether a pixel must be split into child pixels of higher order or remain as a single pixel.

2.5.2 Arithmethic operations

Operations between MOC maps, or a MOC map and a single-resolution map, is the sames as between two single-
resolution maps. Something to keep in mind though is that, for binary operations, if any of the two maps is a MOC
map, the results will be a MOC map as well. The grid will be a combination that of the two operands. This ensures
that there is no loss of information. If you want to keep the same grid, you can use in-place operator (e.g. *=, /=), but
the information might degrade in that case.

[15]: # Inject another shifted source in a new map
phi0 = np.deg2rad(45-.03)
disc_pix = mEq.query_disc(hmap.ang2vec(theta0, phi0), 3*sigma)

mShift = HealpixMap.moc_from_pixels(mEq.nside, disc_pix, density=True)

for pix in range(mShift.npix):

(continues on next page)

2.5. Multi-resolution maps 15

mhealpy, Release 0.1.8

(continued from previous page)

theta,phi = mShift.pix2ang(pix)

mShift[pix] = exp(-((theta-theta0)**2 + (phi-phi0)**2) / 2 / sigma**2)

#Multiply
mRes = m * mShift

Plot side by side
fig,axes = plt.subplots(1,3, dpi=200)

for ax in axes.flatten():
ax.axis('off')

axes[0].set_title("m", size= 5);
axes[1].set_title("mShift", size= 5);
axes[2].set_title("m * mShift", size= 5);

m.plot(axes[0], proj = 'cart', lonra = lonra, latra = latra);
mShift.plot(axes[1], proj = 'cart', lonra = lonra, latra = latra);
mRes.plot(axes[2], proj = 'cart', lonra = lonra, latra = latra);

Show grid
m.plot_grid(axes[0], proj = 'cart', lonra = lonra, latra = latra, color='white',
→˓linewidth = .1)
mShift.plot_grid(axes[1], proj = 'cart', lonra = lonra, latra = latra, color='white',
→˓linewidth = .1)
mRes.plot_grid(axes[2], proj = 'cart', lonra = lonra, latra = latra, color='white',
→˓linewidth = .1)

[15]: ([<matplotlib.lines.Line2D at 0x7f81e01b4640>],
<healpy.projector.CartesianProj at 0x7f82313969a0>)

16 Chapter 2. Quick start

CHAPTER 3

Examples

Warning: This project has been moved to https://mhealpy.readthedocs.io

3.1 LIGO/Virgo maps, I/O and resampling

On this example we’ll use LIGO/Virgo skymaps as an excuse to see how to open/write a map to/from disc, how create
a multi-resolution maps out of a single-resolution map, and how to resample an already multi-resolution map.

3.1.1 Reading a map

Both single and mult-resolution maps are stored in FITS files. While you can download a map and then provide the
local path, you can also use the URL directly, e.g.

[1]: from mhealpy import HealpixMap

GW170817!
m = HealpixMap.read_map("https://dcc.ligo.org/public/0157/P1800381/007/GW170817_
→˓skymap.fits.gz", density = False)

m.plot();

17

https://mhealpy.readthedocs.io

mhealpy, Release 0.1.8

[2]: # Zoom in around the maximum

import numpy as np

theta_max,phi_max = m.pix2ang(np.argmax(m))

lonra = np.rad2deg(phi_max) + np.array([-10,10])
latra = (90-np.rad2deg(theta_max)) + np.array([-10,10])

m.plot(proj = 'cart', latra = latra, lonra = lonra);

18 Chapter 3. Examples

mhealpy, Release 0.1.8

3.1.2 Single to multi-resolution

The map we just opened is a single resolution map. Since this is a well-localized event the full sky is sampled at a
relatively high resolution.

[3]: print("Is multi-resolution? {}".format(True if m.is_moc else False))
print("nside: {}".format(m.nside))
print("# of pixels: {}".format(m.npix))

Is multi-resolution? False
nside: 1024
of pixels: 12582912

We can create a multi-resolution map by setting the condition that the probability assigned to any given pixel is at
most the maximum value of the current single-resolution map. This mitigates the loss of information and results in a
fair sampling for all locations.

[4]: mm = m.to_moc(max_value = max(m))

mm.plot(proj = 'cart', latra = latra, lonra = lonra)

[4]: (<matplotlib.image.AxesImage at 0x7fb2507d19d0>,
<healpy.projector.CartesianProj at 0x7fb2507c3e20>)

While this plot looks pretty much the same as before, we reduced the number of pixels by 3 orders to magnitude.

[5]: print("Is multi-resolution? {}".format(True if mm.is_moc else False))
print("nside: {}".format(mm.nside))
print("# of pixels: {}".format(mm.npix))

Is multi-resolution? True
nside: 1024
of pixels: 4026

We can see the way this works more clearly by superimposing the grid

3.1. LIGO/Virgo maps, I/O and resampling 19

mhealpy, Release 0.1.8

[6]: import matplotlib.pyplot as plt

mm.plot()
mm.plot_grid(plt.gca(), linewidth = .1, color = 'white');

[7]: # Zoom in
mm.plot(proj = 'cart', latra = latra, lonra = lonra)
mm.plot_grid(plt.gca(), proj = 'cart', latra = latra, lonra = lonra, linewidth = .1,
→˓color = 'white');

The function to_moc() is a convenience routine derived from adaptive_moc_mesh(). The same is true for
moc_histogram() and moc_from_pixels(). In the more general adaptive_moc_mesh() the user provides an arbitrary
function that decides, recusively, whether a pixel must be split into child pixels of higher order or remain as a single
pixel.

20 Chapter 3. Examples

mhealpy, Release 0.1.8

3.1.3 Resampling multi-resolution maps

For new gravitational wave events LIGO/Virgo also provides multi-resolution maps straight out the box, e.g.

[8]: from mhealpy import HealpixMap

m = HealpixMap.read_map("https://gracedb.ligo.org/api/superevents/S200219ac/files/
→˓LALInference.multiorder.fits,0", density = False)

print("Is multi-resolution? {}".format(True if m.is_moc else False))
print("nside: {}".format(m.nside))
print("# of pixels: {}".format(m.npix))

m.plot();

Is multi-resolution? True
nside: 512
of pixels: 16896

The grid though corresponds to the adaptive mesh used to generate the sky localization:

[9]: m.plot_grid(linewidth = .1);

We can resample it the same way we did for the single-resolution map:

3.1. LIGO/Virgo maps, I/O and resampling 21

mhealpy, Release 0.1.8

[10]: mm = m.to_moc(max(m))

print("Is multi-resolution? {}".format(True if mm.is_moc else False))
print("nside: {}".format(mm.nside))
print("# of pixels: {}".format(mm.npix))

mm.plot_grid(linewidth = .1);

Is multi-resolution? True
nside: 512
of pixels: 5616

While only a modest improvement in this case, resampling can be useful when the map is the product of maps from
multiple sources. As seen in the quick start tutorial, in order to assure there is no information loss, the grid resulting
from an operation is the union of the grid of its operands. This can result in high resolution in regions where it is no
longer needed.

3.1.4 Writing a map to disc

We can now save this resampled map to disc.

[11]: mm.write_map("S200219ac_LALInference_resampled.multiorder.fits")

The format is compliant with the the IVOA MOC recommendation. The map is saved into the second (0-th indexed)
HDU as an extension table, each pixel specified explicitely by its UNIQ number:

[12]: from astropy.io import fits

f = fits.open("S200219ac_LALInference_resampled.multiorder.fits")

f[1].header

[12]: XTENSION= 'BINTABLE' / binary table extension
BITPIX = 8 / array data type
NAXIS = 2 / number of array dimensions
NAXIS1 = 16 / length of dimension 1
NAXIS2 = 5616 / length of dimension 2
PCOUNT = 0 / number of group parameters
GCOUNT = 1 / number of groups
TFIELDS = 2 / number of table fields
TTYPE1 = 'UNIQ '
TFORM1 = 'K '
TTYPE2 = 'CONTENTS'
TFORM2 = 'D '

(continues on next page)

22 Chapter 3. Examples

https://www.ivoa.net/documents/MOC

mhealpy, Release 0.1.8

(continued from previous page)

PIXTYPE = 'HEALPIX ' / HEALPIX pixelisation
ORDERING= 'NUNIQ ' / Pixel ordering scheme: RING, NESTED, or NUNIQ
COORDSYS= 'C ' / Celestial (C), Galactic (G) or Ecliptic (E)
NSIDE = 512 / Resolution parameter of HEALPIX
INDXSCHM= 'EXPLICIT' / Indexing: IMPLICIT or EXPLICIT
MOCORDER= 9 / Best resolution order

3.1. LIGO/Virgo maps, I/O and resampling 23

mhealpy, Release 0.1.8

24 Chapter 3. Examples

CHAPTER 4

API

Warning: This project has been moved to https://mhealpy.readthedocs.io

4.1 Classes

4.1.1 HealpixBase

class mhealpy.HealpixBase(uniq=None, order=None, nside=None, base=None, scheme=’ring’)
Bases: object

Basic operations related to HEALPix pixelization, for which the map contents information is not needed. This
class is conceptually very similar the the Healpix_Base class of Healpix_cxx.

Single resolution maps are fully defined by specifying their order (or NSIDE) and ordering scheme (“RING” or
“NESTED”).

Multi-resolution maps follow an explicit “NUNIQ” scheme, with each pixel identfied by a _uniq_ number. No
specific is needed nor guaranteed.

Warning: The initialization input is not validated by default. Consider calling is_mesh_valid() after initial-
ization, otherwise results might be unexpected.

Parameters

• uniq (array) – Explicit numbering of each pixel in an “NUNIQ” scheme.

• order (int) – Order of HEALPix map.

• nside (int) – Alternatively, you can specify the NSIDE parameter.

• scheme (str) – Healpix scheme. Either ‘RING’, ‘NESTED’ or ‘NUNIQ’

25

https://mhealpy.readthedocs.io

mhealpy, Release 0.1.8

• base (HealpixBase) – Alternatively, you can copy the properties of another
HealpixBase object

classmethod adaptive_moc_mesh(max_nside, split_fun)
Return a MOC mesh with an adaptive resolution determined by an arbitrary function.

Parameters

• max_nside (int) – Maximum HEALPix nside to consider

• split_fun (function) – This method should return True if a pixel

• be split into pixel of a higher order, and False otherwise.
(should) –

• takes two integers, start (It) –

• correspond to a single pixel in nested rangeset format for
a (which) –

• of nside max_nside. (map) –

Returns HealpixBase

classmethod moc_from_pixels(nside, pixels, nest=False)
Return a MOC mesh where a list of pixels are kept at a given nside, and every other pixel is appropiately
downsampled.

Also see the more generic adaptive_moc() and adaptive_moc_mesh().

Parameters

• nside (int) – Maximum healpix NSIDE (that is, the NSIDE for the pixel list)

• pixels (array) – Pixels that must be kept at the finest pixelation

• nest (bool) – Whether the pixels are a ‘NESTED’ or ‘RING’ scheme

conformable(other)
For single-resolution maps, return True if both maps have the same nside and scheme.

For MOC maps, return True if both maps have the same list of UNIQ pixels (including the ordering)

npix
Get number of pixels.

For multi-resolutions maps, this corresponds to the number of utilized UNIQ pixels.

Returns int

order
Get map order

Returns int

nside
Get map NSIDE

Returns int

scheme
Return HEALPix scheme

Returns Either ‘NESTED’, ‘RING’ or ‘NUNIQ’

Return type str

26 Chapter 4. API

mhealpy, Release 0.1.8

is_nested
Return true if scheme is NESTED or NUNIQ

Return bool

is_ring
Return true if scheme is RING

Return bool

is_moc
Return true if this is a Multi-Dimensional Coverage (MOC) map (multi-resolution)

Returns bool

pix_rangesets(nside=None)
Get the equivalent range of child pixels in nested scheme for a map of equal or higher nside

Parameters nside (int or None) – Nside of output range sets. If None, the map nside will
be used

Returns

With columns named ‘start’ (inclusive) and ’stop’ (exclusive)

Return type recarray

pix_order_list()
Get a list of lists containing all pixels sorted by order

Returns

(pix_per_order, nest_pix_per_order) Each list has a size equal to the map order.
Each element is a list of all pixels whose order matches the index of the list position. The
first output contains the index of the pixels, while the second contains their coresponding
pixel number in a nested scheme.

Return type (list, list)

pix2range(nside, pix)
Get the equivalent range of child pixels in nested scheme for a map of equal or higher nside

Parameters

• nside (int) – Nside of output range sets

• pix (int or array) – Pixel numbers

Returns

Start pixel (inclusive) and stop pixel (exclusive)

Return type (int or array, int or array)

pixarea(pix=0)
Return area of pixel in steradians

Parameters pix (int or array) – Pixel number. Only relevant for MOC maps

Returns float or array

pix2ang(pix)
Return the coordinates of the center of a pixel

Parameters pix (int or array) –

Returns (float or array, float or array)

4.1. Classes 27

mhealpy, Release 0.1.8

pix2vec(pix)
Return a vector corresponding to the center of a pixel

Parameters pix (int or array) –

Returns Size (3,N)

Return type array

ang2pix(theta, phi)
Get the pixel (as used in []) that contains a given coordinate

Parameters

• theta (float or array) – Zenith angle

• phi (float or arrray) – Azimuth angle

Returns int or array

vec2pix(x, y, z)
Get the pixel (as used in []) that contains a given coordinate

Parameters

• theta (float or array) – Zenith angle

• phi (float or arrray) – Azimuth angle

Returns int or array

pix2uniq(pix)
Get the UNIQ representation of a given pixel index.

Parameters pix (int) – Pixel number in the current scheme (as used for [])

uniq
Get an array with the NUNIQ numbers for all pixels

nest2pix(pix)
Get the corresponding pixel in the current grid for a pixel in NESTED scheme. For MOC map, return the
pixel that contains it.

Parameters pix (int or array) – Pixel number in NESTED scheme. Must correspond to
a map of the same order as the current.

Returns int or array

get_interp_weights(theta, phi)
Return the 4 closest pixels on the two rings above and below the location and corresponding weights.
Weights are provided for bilinear interpolation along latitude and longitude

Parameters

• theta (float or array) – Zenith angle (rad)

• phi (float or array) – Azimuth angle (rad)

Returns

(pixels, weights), each with of (4,) if the input is scalar, if (4,N) where N is size of theta
and phi. For MOC maps, these pixel numbers might repeate.

Return type tuple

28 Chapter 4. API

mhealpy, Release 0.1.8

get_all_neighbours(theta, phi=None)
Return the 8 nearest pixels. For MOC maps, these might repeat, as this is equivalent to raterizing the maps
to the highest order, getting the neighbohrs, and then finding the pixels tha contain them.

Parameters

• theta (float or int or array) – Zenith angle (rad). If phi is None, these are
assummed to be pixels numbers. For MOC maps, these are assumed to be pixel numbers
in NESTED scheme for the equivalent single-resolution map of the highest order.

• phi (float or array or None) – Azimuth angle (rad)

Returns

pixel number of the SW, W, NW, N, NE, E, SE and S neighbours, shape is (8,) if input is
scalar, otherwise shape is (8, N) if input is of length N. If a neighbor does not exist (it can
be the case for W, N, E and S) the corresponding pixel number will be -1.

Return type array

is_mesh_valid()
Return True is the map pixelization is valid. For single resolution this simply checks that the size is a
valid NSIDE value. For MOC maps, it checks that every point in the sphere is covered by one and only
one pixel.

Returns True

query_polygon(vertices, inclusive=False, fact=4)
Returns the pixels whose centers lie within the convex polygon defined by the vertices array (if inclusive
is False), or which overlap with this polygon (if inclusive is True).

Parameters

• vertices (float) – Vertex array containing the vertices of the polygon, shape (N, 3).

• inclusive (bool) – f False, return the exact set of pixels whose pixels centers lie
within the region; if True, return all pixels that overlap with the region.

• fact (int) – Only used when inclusive=True. The overlapping test will be done at the
resolution fact*nside. For NESTED ordering, fact must be a power of 2, less than 2**30,
else it can be any positive integer. Default: 4.

Returns The pixels which lie within the given polygon.

Return type int array

query_disc(vec, radius, inclusive=False, fact=4)

Parameters

• vec (float, sequence of 3 elements) – The coordinates of unit vector defin-
ing the disk center.

• radius (float) – The radius (in radians) of the disk

• inclusive (bool) – f False, return the exact set of pixels whose pixels centers lie
within the region; if True, return all pixels that overlap with the region.

• fact (int) – Only used when inclusive=True. The overlapping test will be done at the
resolution fact*nside. For NESTED ordering, fact must be a power of 2, less than 2**30,
else it can be any positive integer. Default: 4.

Returns The pixels which lie within the given disc.

Return type int array

4.1. Classes 29

mhealpy, Release 0.1.8

query_strip(theta1, theta2, inclusive=False)
Returns pixels whose centers lie within the colatitude range defined by theta1 and theta2 (if inclusive is
False), or which overlap with this region (if inclusive is True). If theta1<theta2, the region between both
angles is considered, otherwise the regions 0<theta<theta2 and theta1<theta<pi.

Parameters

• theta (float) – First colatitude (radians)

• phi (float) – Second colatitude (radians)

• inclusive (bool) – f False, return the exact set of pixels whose pixels centers lie
within the region; if True, return all pixels that overlap with the region.

Returns The pixels which lie within the given strip.

Return type int array

boundaries(pix, step=1)
Returns an array containing vectors to the boundary of the nominated pixel.

The returned array has shape (3, 4*step), the elements of which are the x,y,z positions on the unit sphere
of the pixel boundary. In order to get vector positions for just the corners, specify step=1.

plot_grid(ax=None, proj=’moll’, step=32, rot=0, coord=’C’, flip=’astro’, xsize=800, ysize=None,
lonra=[-180, 180], latra=[-90, 90], half_sky=False, reso=1.5, **kwargs)

Plot the pixel boundaries of a Healpix grid

Parameters

• m (HealpixBase) – Map defining the grid

• ax (matplotlib.axes.Axes) – Axes on where to plot

• proj (healpy.projector.SphericalProj) – Projector to converto spherical co-
ordinates to plot’s axes coodinates

• step (int) – How many points per pixel side

• rot (float or sequence) – Describe the rotation to apply. In the form (lon, lat,
psi) (unit: degrees) : the point at longitude lon and latitude lat will be at the center. An
additional rotation of angle psi around this direction is applied. If a scalar, the rotation is
performed around zenith

• coord (str) – Either one of ‘G’ (Galactic), ‘E’ (Equatorial) or ‘C’ (Celestial) to describe
the coordinate system of the map, or a sequence of 2 of these to rotate the map from the
first to the second coordinate system.

• flip (str) – Defines the convention of projection : ‘astro’ (east towards left, west to-
wards right) or ‘geo’ (east towards right, west towards left)

• xsize (int) – The horizontal size of the image.

• ysize (int) – The verital size of the image. For carthographic and gnomonic projections
only.

• lonra (array) – Range in longitude (degrees). For carthographic only.

• latra (array) – Range in latitude (degrees). For carthographic only.

• half_sky (bool) – Plot only one side of the sphere. For orthographic only

• reso (float) – Resolution (in arcmin). For gnominic projection only.

• **kwargs – Passed to matplotlib.pyplot.plot()

Returns

30 Chapter 4. API

mhealpy, Release 0.1.8

The first return value corresponds to the output pyplot.plot() for one of the pixels.
The second is the healpy’s projector used. This is particularly useful to add extra elements
to the plots, e.g.:

plot, proj = m.plot_grid(ax, 'moll')
x,y = proj.ang2xy(np.deg2rad(90), np.deg2rad(45))
ax.text(x, y, "(zenith = 90 deg, azimuth = 45 deg)")

Return type matplotlib.lines.Line2D, healpy,projector

moc_sort()
Sort the uniq pixels composing a MOC map based on its rangeset representation

4.1.2 HealpixMap

class mhealpy.HealpixMap(data=None, uniq=None, order=None, nside=None, scheme=’ring’,
base=None, density=False, dtype=None)

Bases: mhealpy.containers.healpix_base.HealpixBase

Object-oriented healpy wrapper with support for multi-resolutions maps (known as multi-order coverage map,
or MOC).

You can instantiate a map by providing either:

• Size (through order or nside), and a scheme (‘RING’ or ‘NESTED’). This will initialize an empty
map.

• A list of UNIQ pixels. This will initialize a MOC map. Providing the values for each pixel is optional,
zero-initialized by default.

• An array (in data) and an a scheme (‘RING’ or ‘NESTED’). This will initialize the contents of the
single-resolution map.

• A HealpixBase object. The data will be zero-initialized.

Warning: The initialization input is not validated by default. Consider calling is_mesh_valid() after initial-
ization, otherwise results might be unexpected.

Regardless of the underlaying grid, you can operate on maps using *, /, +, -, **, == and abs. For binary
operations the result always corresponds to the finest grid, so there is no loss of information. If any of the
operands is a MOC, the result is a MOC with an appropiate updated grid.. If both operands have the same
NSIDE, the scheme of the result corresponds to the left operand. If you want to preserve the grid for a specific
operand, use *=, /=, etc.

Warning: Information might degrade if you use in-place operators (e.g. *=, /=)

The maps are array-like, that is, the can be casted into a regular numpy array (as used by healpy), are iterable
(over the pixel values) and can be used with built-in function such as sum and max.

You can also access the value of pixels using regular numpy indexing with []. For MOC maps, no specific pixel
ordering is guaranted. For a given pixel number ipix in the current grid, you can get the corresponding UNIQ
pixel number using m.pix2uniq(ipix).

Parameters

4.1. Classes 31

mhealpy, Release 0.1.8

• data (array) – Values to initialize map. Zero-initialized it not provided. The map NSIDE
is deduced from the array size, unless uniq is specified in which case this is considered a
multi-resolution map.

• uniq (array or HealpixBase) – List of NUNIQ pixel number to initialize a MOC
map.

• order (int) – Order of HEALPix map.

• nside (int) – Alternatively, you can specify the NSIDE parameter.

• scheme (str) – Healpix scheme. Either ‘RING’, ‘NESTED’ or ‘NUNIQ’

• base (HealpixBase) – Specify the grid using a HealpixBase object

• density (bool) – Whether the value of each pixel should be treated as counts in a his-
togram (False) or as the value of a [density] function evaluated at the center of the pixel
(True). This affect operations involving the splitting of a pixel.

• dtype (array) – Numpy data type. Will be ignored if data is provided.

classmethod read_map(filename, field=None, uniq_field=0, hdu=1, density=False)
Read a HEALPix map from a FITS file.

Parameters

• filename (Path) – Path to file

• field (int) – Column where the map contents are. Default: 0 for single-resolution
maps, 1 for MOC maps.

• uniq_field (int) – Column where the UNIQ pixel numbers are. For MOC maps only.

• hdu (int) – The header number to look at. Starts at 0.

• density (bool) – Whether this is a histogram-like or a density-like map.

Returns HealpixMap

write_map(filename, extra_maps=None, column_names=None, extra_header=None, over-
write=False, coordsys=’C’)

Write map to disc.

Parameters

• filename (Path) – Path to output file

• extra_maps (HealpixMap or array) – Save more maps in the same file as extra
columns. Must be conformable.

• column_names (str or array) – Name of colums. Must have the same length as
the number for maps. Defaults to ‘CONTENTSn’, where n is the map number (ommited
for a single map). For MOC maps, the pixel information is always stored in the first
column, called ‘UNIQ’.

• coordsys (str) – Coordinate system. Celestial (‘C’), Galactic (‘G’) or Ecliptic (‘E’)

• extra_header (iterable) – Iterable of (keyword, value, [comment]) tuples

• overwrite (bool) – If True, overwrite the output file if it exists. Raises an OSError if
False and the output file exists.

classmethod adaptive_moc_mesh(max_nside, split_fun, density=False, dtype=None)
Return a zero-initialized MOC map, with an adaptive resolution determined by an arbitrary function.

Parameters

32 Chapter 4. API

mhealpy, Release 0.1.8

• max_nside (int) – Maximum HEALPix nside to consider

• split_fun (function) – This method should return True if a pixel

• be split into pixel of a higher order, and False otherwise.
(should) –

• takes two integers, start (It) –

• correspond to a single pixel in nested rangeset format for
a (which) –

• of nside max_nside. (map) –

• density (bool) – Will be pass to HealpixMap initialization.

• dtype (dtype) – Data type

Returns HealpixMap

classmethod moc_from_pixels(nside, pixels, nest=False, density=False, dtype=None)
Return a zero-initialize MOC map where a list of pixels are kept at a given nside, and every other pixel is
appropiately downsampled.

Also see the more generic adaptive_moc_mesh().

Parameters

• nside (int) – Maximum healpix NSIDE (that is, the NSIDE for the pixel order list)

• pixels (array) – Pixels that must be kept at the finest pixelation

• nest (bool) – Whether the pixels are a ‘NESTED’ or ‘RING’ scheme

• density (bool) – Wheather the map is density-like or histogram-like

• dtype – Daty type

classmethod moc_histogram(nside, samples, max_value, nest=False, weights=None)
Generate an adaptive MOC map by histogramming samples.

If the number of samples is greater than the number of pixels in a map of the input nside, consider
generating a single-resolution map and then use to_moc().

Also see the more generic adaptive_moc_mesh().

Parameters

• nside (int) – Healpix NSIDE of the samples and maximum NSIDE of the output map

• samples (int array) – List of pixels representing the samples. e.g. the output of
healpy.ang2pix().

• max_value – maximum number of samples (or sum of weights) per pixel. Note that due
to limitations of the input nside, the output could contain pixels with a value largen than
this

• nest (bool) – Whether the samples are in NESTED or RING scheme

• weights (array) – Optionally weight the samples. Both must have the same size.

Returns HealpixMap

to_moc(max_value)
Convert a single-resolution map into a MOC based on the maximum value a given pixel the latter should
have.

. . . note:

4.1. Classes 33

mhealpy, Release 0.1.8

The maximum nside of the MOC map is the same as the nside of the
single-resolution map, so the output map could contain pixels with
a value greater than this.

If the map is already a MOC map, it will recompute the grid accordingly by combining uniq pixels. Uniq
pixels are never split.

Also see the more generic adaptive_moc_mesh().

Parameters max_value – Maximum value per pixel of the MOC. Whether the map is
histogram-like or density-like is taken into account.

Returns HealpixMap

density(density=None, update=True)
Switch between a density-like map and a histogram-like map.

Parameters

• density (bool or None) – Whether the value of each pixel should be treated as
counts in a histogram (False) or as the value of a [density] function evaluated at the
center of the pixel (True). This affect operations involving the splitting of a pixel. None
will leave this paramter unchanged.

• update (bool) – If True, the values of the map will be updated accordingly. Otherwise
only the density parameter is changed.

Returns The current density

Return type bool

data
Get the raw data in the form of an array.

rasterize(nside, scheme)
Convert to map of a given NSIDE and scheme

Parameters

• nside (int) – HEALPix NSIDE

• scheme (str) – RING or NESTED

Returns HealpixMap

plot(ax=None, proj=’moll’, rot=0, coord=’C’, flip=’astro’, xsize=800, ysize=None, lonra=[-180,
180], latra=[-90, 90], half_sky=False, reso=1.5, **kwargs)

Plot map. This is a wrapper for matplotlib.pyplot.imshow

Plots of multi-resolution maps are equivalent to plotting the equivalent rasterized single-resolution map
–i.e. values are weighted based on pixel area.

Parameters

• ax (matplotlib.axes.Axes) – Axes on where to plot the map. If None, it will
create a new figure.

• proj (str) – Projections: ‘moll’ (molltweide), ‘cart’ (carthographic), ‘orth’ (orthograph-
ics) or ‘gnom’ (gnomonic)

• rot (float or sequence) – Describe the rotation to apply. In the form (lon, lat,
psi) (unit: degrees) : the point at longitude lon and latitude lat will be at the center. An
additional rotation of angle psi around this direction is applied. If a scalar, the rotation is
performed around zenith

34 Chapter 4. API

mhealpy, Release 0.1.8

• coord (str) – Either one of ‘G’ (Galactic), ‘E’ (Equatorial) or ‘C’ (Celestial) to describe
the coordinate system of the map, or a sequence of 2 of these to rotate the map from the
first to the second coordinate system.

• flip (str) – Defines the convention of projection : ‘astro’ (east towards left, west to-
wards right) or ‘geo’ (east towards right, west towards left)

• xsize (int) – The horizontal size of the image.

• ysize (int) – The verital size of the image. For carthographic and gnomonic projections
only.

• lonra (array) – Range in longitude (degrees). For carthographic only.

• latra (array) – Range in latitude (degrees). For carthographic only.

• half_sky (bool) – Plot only one side of the sphere. For orthographic only

• reso (float) – Resolution (in arcmin). For gnominic projection only.

• **kwargs – Passed to matplotlib.pyplot.imshow

Returns

The first return value corresponds to the output imgshow. The second is the healpy’s
projector used. This is particularly useful to add extra elements to the plots, e.g.:

plot, proj = m.plot(ax, 'moll')
x,y = proj.ang2xy(np.deg2rad(90), np.deg2rad(45))
ax.text(x, y, "(zenith = 90 deg, azimuth = 45 deg)")

Return type AxesImage, healpix.projector.SphericalProj

get_interp_val(theta, phi)
Return the bi-linear interpolation value of a map using 4 nearest neighbours.

For MOC maps, this is equivalent to raterizing the map first to the highest order.

Parameters

• theta (float or array) – Zenith angle (rad)

• phi (float or array) – Azimuth angle (rad)

Returns scalar or array

ang2pix(theta, phi)
Get the pixel (as used in []) that contains a given coordinate

Parameters

• theta (float or array) – Zenith angle

• phi (float or arrray) – Azimuth angle

Returns int or array

boundaries(pix, step=1)
Returns an array containing vectors to the boundary of the nominated pixel.

The returned array has shape (3, 4*step), the elements of which are the x,y,z positions on the unit sphere
of the pixel boundary. In order to get vector positions for just the corners, specify step=1.

conformable(other)
For single-resolution maps, return True if both maps have the same nside and scheme.

For MOC maps, return True if both maps have the same list of UNIQ pixels (including the ordering)

4.1. Classes 35

mhealpy, Release 0.1.8

get_all_neighbours(theta, phi=None)
Return the 8 nearest pixels. For MOC maps, these might repeat, as this is equivalent to raterizing the maps
to the highest order, getting the neighbohrs, and then finding the pixels tha contain them.

Parameters

• theta (float or int or array) – Zenith angle (rad). If phi is None, these are
assummed to be pixels numbers. For MOC maps, these are assumed to be pixel numbers
in NESTED scheme for the equivalent single-resolution map of the highest order.

• phi (float or array or None) – Azimuth angle (rad)

Returns

pixel number of the SW, W, NW, N, NE, E, SE and S neighbours, shape is (8,) if input is
scalar, otherwise shape is (8, N) if input is of length N. If a neighbor does not exist (it can
be the case for W, N, E and S) the corresponding pixel number will be -1.

Return type array

get_interp_weights(theta, phi)
Return the 4 closest pixels on the two rings above and below the location and corresponding weights.
Weights are provided for bilinear interpolation along latitude and longitude

Parameters

• theta (float or array) – Zenith angle (rad)

• phi (float or array) – Azimuth angle (rad)

Returns

(pixels, weights), each with of (4,) if the input is scalar, if (4,N) where N is size of theta
and phi. For MOC maps, these pixel numbers might repeate.

Return type tuple

is_mesh_valid()
Return True is the map pixelization is valid. For single resolution this simply checks that the size is a
valid NSIDE value. For MOC maps, it checks that every point in the sphere is covered by one and only
one pixel.

Returns True

is_moc
Return true if this is a Multi-Dimensional Coverage (MOC) map (multi-resolution)

Returns bool

is_nested
Return true if scheme is NESTED or NUNIQ

Return bool

is_ring
Return true if scheme is RING

Return bool

moc_sort()
Sort the uniq pixels composing a MOC map based on its rangeset representation

nest2pix(pix)
Get the corresponding pixel in the current grid for a pixel in NESTED scheme. For MOC map, return the
pixel that contains it.

36 Chapter 4. API

mhealpy, Release 0.1.8

Parameters pix (int or array) – Pixel number in NESTED scheme. Must correspond to
a map of the same order as the current.

Returns int or array

npix
Get number of pixels.

For multi-resolutions maps, this corresponds to the number of utilized UNIQ pixels.

Returns int

nside
Get map NSIDE

Returns int

order
Get map order

Returns int

pix2ang(pix)
Return the coordinates of the center of a pixel

Parameters pix (int or array) –

Returns (float or array, float or array)

pix2range(nside, pix)
Get the equivalent range of child pixels in nested scheme for a map of equal or higher nside

Parameters

• nside (int) – Nside of output range sets

• pix (int or array) – Pixel numbers

Returns

Start pixel (inclusive) and stop pixel (exclusive)

Return type (int or array, int or array)

pix2uniq(pix)
Get the UNIQ representation of a given pixel index.

Parameters pix (int) – Pixel number in the current scheme (as used for [])

pix2vec(pix)
Return a vector corresponding to the center of a pixel

Parameters pix (int or array) –

Returns Size (3,N)

Return type array

pix_order_list()
Get a list of lists containing all pixels sorted by order

Returns

(pix_per_order, nest_pix_per_order) Each list has a size equal to the map order.
Each element is a list of all pixels whose order matches the index of the list position. The
first output contains the index of the pixels, while the second contains their coresponding
pixel number in a nested scheme.

4.1. Classes 37

mhealpy, Release 0.1.8

Return type (list, list)

pix_rangesets(nside=None)
Get the equivalent range of child pixels in nested scheme for a map of equal or higher nside

Parameters nside (int or None) – Nside of output range sets. If None, the map nside will
be used

Returns

With columns named ‘start’ (inclusive) and ’stop’ (exclusive)

Return type recarray

pixarea(pix=0)
Return area of pixel in steradians

Parameters pix (int or array) – Pixel number. Only relevant for MOC maps

Returns float or array

plot_grid(ax=None, proj=’moll’, step=32, rot=0, coord=’C’, flip=’astro’, xsize=800, ysize=None,
lonra=[-180, 180], latra=[-90, 90], half_sky=False, reso=1.5, **kwargs)

Plot the pixel boundaries of a Healpix grid

Parameters

• m (HealpixBase) – Map defining the grid

• ax (matplotlib.axes.Axes) – Axes on where to plot

• proj (healpy.projector.SphericalProj) – Projector to converto spherical co-
ordinates to plot’s axes coodinates

• step (int) – How many points per pixel side

• rot (float or sequence) – Describe the rotation to apply. In the form (lon, lat,
psi) (unit: degrees) : the point at longitude lon and latitude lat will be at the center. An
additional rotation of angle psi around this direction is applied. If a scalar, the rotation is
performed around zenith

• coord (str) – Either one of ‘G’ (Galactic), ‘E’ (Equatorial) or ‘C’ (Celestial) to describe
the coordinate system of the map, or a sequence of 2 of these to rotate the map from the
first to the second coordinate system.

• flip (str) – Defines the convention of projection : ‘astro’ (east towards left, west to-
wards right) or ‘geo’ (east towards right, west towards left)

• xsize (int) – The horizontal size of the image.

• ysize (int) – The verital size of the image. For carthographic and gnomonic projections
only.

• lonra (array) – Range in longitude (degrees). For carthographic only.

• latra (array) – Range in latitude (degrees). For carthographic only.

• half_sky (bool) – Plot only one side of the sphere. For orthographic only

• reso (float) – Resolution (in arcmin). For gnominic projection only.

• **kwargs – Passed to matplotlib.pyplot.plot()

Returns

38 Chapter 4. API

mhealpy, Release 0.1.8

The first return value corresponds to the output pyplot.plot() for one of the pixels.
The second is the healpy’s projector used. This is particularly useful to add extra elements
to the plots, e.g.:

plot, proj = m.plot_grid(ax, 'moll')
x,y = proj.ang2xy(np.deg2rad(90), np.deg2rad(45))
ax.text(x, y, "(zenith = 90 deg, azimuth = 45 deg)")

Return type matplotlib.lines.Line2D, healpy,projector

query_disc(vec, radius, inclusive=False, fact=4)

Parameters

• vec (float, sequence of 3 elements) – The coordinates of unit vector defin-
ing the disk center.

• radius (float) – The radius (in radians) of the disk

• inclusive (bool) – f False, return the exact set of pixels whose pixels centers lie
within the region; if True, return all pixels that overlap with the region.

• fact (int) – Only used when inclusive=True. The overlapping test will be done at the
resolution fact*nside. For NESTED ordering, fact must be a power of 2, less than 2**30,
else it can be any positive integer. Default: 4.

Returns The pixels which lie within the given disc.

Return type int array

query_polygon(vertices, inclusive=False, fact=4)
Returns the pixels whose centers lie within the convex polygon defined by the vertices array (if inclusive
is False), or which overlap with this polygon (if inclusive is True).

Parameters

• vertices (float) – Vertex array containing the vertices of the polygon, shape (N, 3).

• inclusive (bool) – f False, return the exact set of pixels whose pixels centers lie
within the region; if True, return all pixels that overlap with the region.

• fact (int) – Only used when inclusive=True. The overlapping test will be done at the
resolution fact*nside. For NESTED ordering, fact must be a power of 2, less than 2**30,
else it can be any positive integer. Default: 4.

Returns The pixels which lie within the given polygon.

Return type int array

query_strip(theta1, theta2, inclusive=False)
Returns pixels whose centers lie within the colatitude range defined by theta1 and theta2 (if inclusive is
False), or which overlap with this region (if inclusive is True). If theta1<theta2, the region between both
angles is considered, otherwise the regions 0<theta<theta2 and theta1<theta<pi.

Parameters

• theta (float) – First colatitude (radians)

• phi (float) – Second colatitude (radians)

• inclusive (bool) – f False, return the exact set of pixels whose pixels centers lie
within the region; if True, return all pixels that overlap with the region.

Returns The pixels which lie within the given strip.

4.1. Classes 39

mhealpy, Release 0.1.8

Return type int array

scheme
Return HEALPix scheme

Returns Either ‘NESTED’, ‘RING’ or ‘NUNIQ’

Return type str

uniq
Get an array with the NUNIQ numbers for all pixels

vec2pix(x, y, z)
Get the pixel (as used in []) that contains a given coordinate

Parameters

• theta (float or array) – Zenith angle

• phi (float or arrray) – Azimuth angle

Returns int or array

4.2 Pixelization functions

These functions can be call without referencing any class. e.g.:

>>> import mhealpy as mhp
>>> mhp.nest2uniq(nside = 128, ipix = 3)
65539

4.2.1 Single-resolution maps

mhealpy.pixelfunc.single.order2npix(order)
Get the number of pixel for a map of a given order

Parameters order (int or array) –

Returns int or array

mhealpy.pixelfunc.single.vec2ang(vectors, lonlat=False)
Same as healpy.pixelfunc.vec2ang. Included here for convinience.

mhealpy.pixelfunc.single.ang2vec(theta, phi, lonlat=False)
Same as healpy.pixelfunc.ang2vec. Included here for convinience.

4.2.2 Multi-resolution maps

mhealpy.pixelfunc.moc.uniq2nside(uniq)
Extract the corresponding nside from a UNIQ numbered pixel

Parameters uniq (int or array) – Pixel number

Returns int or array

mhealpy.pixelfunc.moc.uniq2nest(uniq)
Convert from UNIQ ordering scheme to NESTED

Parameters uniq (int or array) – Pixel number

40 Chapter 4. API

mhealpy, Release 0.1.8

Return (int or array, int or array): nside, npix

mhealpy.pixelfunc.moc.nest2uniq(nside, ipix)
Convert from from NESTED to UNIQ scheme

Parameters

• nside (int) – HEALPix NSIDE parameter

• ipix (int or array) – Pixel number in NESTED scheme

Returns int or array

mhealpy.pixelfunc.moc.nest2range(nside_input, pix, nside_output)
Get the equivalent range of pixel that correspond to all child pixels of a map of a greater order.

Parameters

• nside_input (int or array) – Nside of input pixel

• pix (int or array) – Input pixel.

• nside_output (int) – Nside of map with child pixels

Returns

Start pixel (inclusive) and stop pixel (exclusive)

Return type (int or array, int or array)

mhealpy.pixelfunc.moc.uniq2range(nside, uniq)
Convert from a pixel number in NUNIQ scheme to the range of children pixels that it would correspond to in a
NESTED map of a given order

Parameters

• order (int) – Nside of equivalent single resolution map

• uniq (int or array) – Pixel number in NUNIQ scheme

Returns

Start pixel (inclusive) and stop pixel (exclusive)

Return type (int or array, int or array)

mhealpy.pixelfunc.moc.range2uniq(nside, pix_range)
Convert from range of children pixels in a NESTED map of a given order to the corresponding uniq pixel
number.

Parameters

• nside (int) – Nside of equivalent single resolution map

• pix_range (int or array, int or array) – Star pixel (inclusive) and stop
pixel (exclusive)

Returns int

4.2. Pixelization functions 41

mhealpy, Release 0.1.8

42 Chapter 4. API

Python Module Index

m
mhealpy.pixelfunc.moc, 40
mhealpy.pixelfunc.single, 40

43

mhealpy, Release 0.1.8

44 Python Module Index

Index

A
adaptive_moc_mesh() (mhealpy.HealpixBase class

method), 26
adaptive_moc_mesh() (mhealpy.HealpixMap class

method), 32
ang2pix() (mhealpy.HealpixBase method), 28
ang2pix() (mhealpy.HealpixMap method), 35
ang2vec() (in module mhealpy.pixelfunc.single), 40

B
boundaries() (mhealpy.HealpixBase method), 30
boundaries() (mhealpy.HealpixMap method), 35

C
conformable() (mhealpy.HealpixBase method), 26
conformable() (mhealpy.HealpixMap method), 35

D
data (mhealpy.HealpixMap attribute), 34
density() (mhealpy.HealpixMap method), 34

G
get_all_neighbours() (mhealpy.HealpixBase

method), 28
get_all_neighbours() (mhealpy.HealpixMap

method), 35
get_interp_val() (mhealpy.HealpixMap method),

35
get_interp_weights() (mhealpy.HealpixBase

method), 28
get_interp_weights() (mhealpy.HealpixMap

method), 36

H
HealpixBase (class in mhealpy), 25
HealpixMap (class in mhealpy), 31

I
is_mesh_valid() (mhealpy.HealpixBase method),

29

is_mesh_valid() (mhealpy.HealpixMap method),
36

is_moc (mhealpy.HealpixBase attribute), 27
is_moc (mhealpy.HealpixMap attribute), 36
is_nested (mhealpy.HealpixBase attribute), 26
is_nested (mhealpy.HealpixMap attribute), 36
is_ring (mhealpy.HealpixBase attribute), 27
is_ring (mhealpy.HealpixMap attribute), 36

M
mhealpy.pixelfunc.moc (module), 40
mhealpy.pixelfunc.single (module), 40
moc_from_pixels() (mhealpy.HealpixBase class

method), 26
moc_from_pixels() (mhealpy.HealpixMap class

method), 33
moc_histogram() (mhealpy.HealpixMap class

method), 33
moc_sort() (mhealpy.HealpixBase method), 31
moc_sort() (mhealpy.HealpixMap method), 36

N
nest2pix() (mhealpy.HealpixBase method), 28
nest2pix() (mhealpy.HealpixMap method), 36
nest2range() (in module mhealpy.pixelfunc.moc), 41
nest2uniq() (in module mhealpy.pixelfunc.moc), 41
npix (mhealpy.HealpixBase attribute), 26
npix (mhealpy.HealpixMap attribute), 37
nside (mhealpy.HealpixBase attribute), 26
nside (mhealpy.HealpixMap attribute), 37

O
order (mhealpy.HealpixBase attribute), 26
order (mhealpy.HealpixMap attribute), 37
order2npix() (in module mhealpy.pixelfunc.single),

40

P
pix2ang() (mhealpy.HealpixBase method), 27

45

mhealpy, Release 0.1.8

pix2ang() (mhealpy.HealpixMap method), 37
pix2range() (mhealpy.HealpixBase method), 27
pix2range() (mhealpy.HealpixMap method), 37
pix2uniq() (mhealpy.HealpixBase method), 28
pix2uniq() (mhealpy.HealpixMap method), 37
pix2vec() (mhealpy.HealpixBase method), 27
pix2vec() (mhealpy.HealpixMap method), 37
pix_order_list() (mhealpy.HealpixBase method),

27
pix_order_list() (mhealpy.HealpixMap method),

37
pix_rangesets() (mhealpy.HealpixBase method),

27
pix_rangesets() (mhealpy.HealpixMap method),

38
pixarea() (mhealpy.HealpixBase method), 27
pixarea() (mhealpy.HealpixMap method), 38
plot() (mhealpy.HealpixMap method), 34
plot_grid() (mhealpy.HealpixBase method), 30
plot_grid() (mhealpy.HealpixMap method), 38

Q
query_disc() (mhealpy.HealpixBase method), 29
query_disc() (mhealpy.HealpixMap method), 39
query_polygon() (mhealpy.HealpixBase method),

29
query_polygon() (mhealpy.HealpixMap method),

39
query_strip() (mhealpy.HealpixBase method), 29
query_strip() (mhealpy.HealpixMap method), 39

R
range2uniq() (in module mhealpy.pixelfunc.moc), 41
rasterize() (mhealpy.HealpixMap method), 34
read_map() (mhealpy.HealpixMap class method), 32

S
scheme (mhealpy.HealpixBase attribute), 26
scheme (mhealpy.HealpixMap attribute), 40

T
to_moc() (mhealpy.HealpixMap method), 33

U
uniq (mhealpy.HealpixBase attribute), 28
uniq (mhealpy.HealpixMap attribute), 40
uniq2nest() (in module mhealpy.pixelfunc.moc), 40
uniq2nside() (in module mhealpy.pixelfunc.moc), 40
uniq2range() (in module mhealpy.pixelfunc.moc), 41

V
vec2ang() (in module mhealpy.pixelfunc.single), 40
vec2pix() (mhealpy.HealpixBase method), 28

vec2pix() (mhealpy.HealpixMap method), 40

W
write_map() (mhealpy.HealpixMap method), 32

46 Index

	Installation
	For developers

	Quick start
	mhealpy as an object-oriented healpy wrapper
	Plotting
	Order/scheme changes and the density parameter
	Arithmethic operations
	Multi-resolution maps

	Examples
	LIGO/Virgo maps, I/O and resampling

	API
	Classes
	Pixelization functions

	Python Module Index
	Index

